Ion channel-kinase TRPM7 is required for maintaining cardiac automaticity.

نویسندگان

  • Rajan Sah
  • Pietro Mesirca
  • Marjolein Van den Boogert
  • Jonathan Rosen
  • John Mably
  • Matteo E Mangoni
  • David E Clapham
چکیده

Sick sinus syndrome and atrioventricular block are common clinical problems, often necessitating permanent pacemaker placement, yet the pathophysiology of these conditions remains poorly understood. Here we show that Transient Receptor Potential Melastatin 7 (TRPM7), a divalent-permeant channel-kinase of unknown function, is highly expressed in embryonic myocardium and sinoatrial node (SAN) and is required for cardiac automaticity in these specialized tissues. TRPM7 disruption in vitro, in cultured embryonic cardiomyocytes, significantly reduces spontaneous Ca(2+) transient firing rates and is associated with robust down-regulation of Hcn4, Cav3.1, and SERCA2a mRNA. TRPM7 knockdown in zebrafish, global murine cardiac Trpm7 deletion (KO(αMHC-Cre)), and tamoxifen-inducible SAN restricted Trpm7 deletion (KO(HCN4-CreERT2)) disrupts cardiac automaticity in vivo. Telemetered and sedated KO(αMHC-Cre) and KO(HCN4-CreERT2) mice show episodes of sinus pauses and atrioventricular block. Isolated SAN from KO(αMHC-Cre) mice exhibit diminished Ca(2+) transient firing rates with a blunted diastolic increase in Ca(2+). Action potential firing rates are diminished owing to slower diastolic depolarization. Accordingly, Hcn4 mRNA and the pacemaker current, I(f), are diminished in SAN from both KO(αMHC-Cre) and KO(HCN4-CreERT2) mice. Moreover, heart rates of KO(αMHC-Cre) mice are less sensitive to the selective I(f) blocker ivabradine, and acute application of the recently identified TRPM7 blocker FTY720 has no effect on action potential firing rates of wild-type SAN cells. We conclude that TRPM7 influences diastolic membrane depolarization and automaticity in SAN indirectly via regulation of Hcn4 expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of TRPM7 in Cancer: Potential as Molecular Biomarker and Therapeutic Target

The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed ion channel with intrinsic kinase activity. Molecular and electrophysiological analyses of the structure and activity of TRPM7 have revealed functional coupling of its channel and kinase activity. Studies have indicated the important roles of TRPM7 channel-kinase in fundamental cellular processes,...

متن کامل

The TRPM7 Chanzyme Is Cleaved to Release a Chromatin-Modifying Kinase

TRPM7 is a ubiquitous ion channel and kinase, a unique "chanzyme," required for proper early embryonic development. It conducts Zn(2+), Mg(2+), and Ca(2+) as well as monovalent cations and contains a functional serine/threonine kinase at its carboxyl terminus. Here, we show that in normal tissues and cell lines, the kinase is proteolytically cleaved from the channel domain in a cell-type-specif...

متن کامل

Natural and Synthetic Modulators of the TRPM7 Channel

Transient receptor potential cation channel subfamily M member 7 (TRPM7) is a bi-functional protein comprising a TRP ion channel segment linked to an α-type protein kinase domain. Genetic inactivation of TRPM7 revealed its central role in magnesium metabolism, cell motility, proliferation and differentiation. TRPM7 is associated with anoxic neuronal death, cardiac fibrosis and tumor progression...

متن کامل

Identification of dimer interactions required for the catalytic activity of the TRPM7 alpha-kinase domain.

TRPM7 (transient receptor potential melastatin) combines an ion channel domain with a C-terminal protein kinase domain that belongs to the atypical alpha-kinase family. The TRPM7 alpha-kinase domain assembles into a dimer through the exchange of an N-terminal segment that extends from residue 1551 to residue 1577 [Yamaguchi, Matsushita, Nairn and Kuriyan (2001) Mol. Cell 7, 1047-1057]. Here, we...

متن کامل

TRPM7 is down‐regulated in both left atria and left ventricle of ischaemic cardiomyopathy patients and highly related to changes in ventricular function

AIMS The kinase ion channel transient receptor potential melastatin 7 (TRPM7) is considered a modulator of cardiac fibrosis progression; nevertheless, we lack of studies analysing its role in human ischaemic cardiomyopathy (ICM). Our objective was to analyse the expression of genes encoding cardiac ion channels in human ICM, focusing on the alterations in mRNA levels of TRPM7 and its relationsh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 32  شماره 

صفحات  -

تاریخ انتشار 2013